Industri Cluster and Competitive Advantage of Micro-Firms: Insight from Wood Industry in Ghana

Daniel M. Quaye, Isaac Mensah
Department of Marketing and Entrepreneurship
University of Ghana, Accra-Legon, Accra, Ghana.

Abstract
The extent of association and complementarity in improving competitive advantage of industrial cluster cannot be underestimated. This paper explored the competitive advantage of micro-firms in a cluster on the basis that firms in a cluster derive essential benefits that those outside do not enjoy. The paper proposed that factors of product, horizontal networking and innovation increase competitive advantage. Based on a convenient sample of 249 wood operators in a cluster (Ayifua Wood Village) our result supports that horizontal networking and innovation enhances competitive advantage, while access to factors of production was not supported. The paper concludes and recommends that micro-firms in a cluster must “unlearn” their idiosyncratic approach to business, open-up, share information, knowledge and develop strong networks in the cluster to bolster their competitive edge. The paper contributes to literature by adopting competitive advantage as a composite measure, contrary to what exist in previous studies.

Keywords: industrial cluster, competitive advantage, micro-firms, wood industry, Ghana

Introduction
Generally activities of micro-firms have been characterized as engine for economic growth and development. Micro-firms across the globe constitute the most dominant form of business contributing significantly to employment creation, domestic and national income. Despite the significant contributions of micro-firms particularly in emerging economies such as Ghana, studies have identified multiplicity of challenges inhibiting their competitive performance. Challenges such as lack of access to credit/finance (Abor & Quartey, 2010; Fraser, Bhaumik & Wright, 2015); market information (Hinson & Mahmoud, 2011); improved technology (Quaye, 2014); modern and improved experience (Karaev, Lenny Koh, Leslie & Szamosi, 2007) have been identified as principal challenges mitigating competitive strength of small businesses. Coupled with challenging Ghanaian business environment (Frazer, 2005) micro-firms are therefore compelled to mould themselves to bolster their competitive performance (Fassoula, 2006).
Consequently, contemporary studies have made a strong call for extensive investigation into the challenges in micro-business units (Bino Paul et al., 2017, 448). Quite apart from this, an important question arises whether the genesis of challenges confronting micro-firms is as a result of their size, as claimed by Fassoula (2006). Sengenberger and Pyke (1992) pointed out that the problem of many micro-firms is not their size, but being isolated. Indeed, the dynamisms of micro-firms and the nature of their business mean that individually they have little capacity to respond to competitive pressure with improved competitive strategies. Studies such as Ceglie and Dini (1999 cited in Amoah-Mensah, 2015) have concurred that competitive disadvantage of micro-firms can be addressed through “network” where firms locate in a particular geographical area. The system of network has been variously described as “geographic cluster” (Lei & Huang, 2014); hot spot or industrial cluster (Pouder & Caron, 1996).

The concept of industrial clustering has been an age-old practice until 1990s where industrial cluster assumed more essential role in research fields such as management, economics and policy (Bell, 2005; Porter, 1990; Tallman et al., 2004). According to Aufretsch and Feldman (2004) industrial clustering represents a set of interconnected organisations supporting innovations in a particular industry. Usually, industrial cluster comprises producers, suppliers, distributors and competitors (Gunawa, Jacob & Geert, 2013) and local institutions such as government agencies, research organizations (Porter, 2000). Semi-Conductor industry in Silicon Valley, automobile industry in Detroit (USA), textile and footwear manufacturing industry in Italy, Japan’s cutlery industries, Special Economic Zones (SEZs) in China and Taiwan are few great stories of industry clusters. For instance, Schwab and Xavier (2010) indicated that, the World Economic Forum in 2010 ranked Taiwan as number one for industrial cluster development. In Ghana, few industrial clusters such as Sokoban wood village in Kumasi and Tema industrial area among others exist.

The advantages of industrial cluster are numerous. Firms located in a cluster enhance competitive advantage (Caniels & Romijn, 2005; Schmitz & Khalid, 1999). However, a critical view of literature reveals that studies examining the effects of industrial cluster and competitive advantage of micro firms are very limited and rare in emerging economies (Amoah-Mensah, 2015; Gunawan et al., 2013). Some studies have even questioned the importance of clustering (Meyer-Stamer, 2002).

While few studies have examined the relationship from theoretical and conceptual perspective (Boja, 2011; Zeinalnezhad, Muriati & Shahnorbanun, 2011) other studies have also focused on assessing the relationship from specific industrial perspectives such as: sea food
processing (Felzensztein et al., 2010); biotechnology (McCann & Folta, 2011); financial services (Bell, 2005) and high technological industries (Stam and Elfring, 2008). Extent literature in emerging countries examining industrial cluster and competitive advantage of micro-firms in the wood industry is absent. Study by Amoah-Mensah (2015) in this regard focused on only SMEs and also examined competitive advantage measures including (sales, profit, quality and quantity). This allows the researcher to address these gaps by expanding knowledge on the effects of industrial cluster on competitive advantage of micro-firms in an emerging economy. Again, we examined competitive advantage as a composite measure of firm performance contrary to what exist in literature.

Against this backdrop, our aim in this paper is to attempt an investigation into the relationship between industrial clustering and competitive advantage of micro-firms in Ghanaian wood village. We contribute to the growing debate regarding the relationship between industrial cluster and competitive advantage.

Concept of industrial cluster

It is currently difficult to conclude that micro-firms can survive without support from other industry firms. To survive and remain competitive in the market, small-firms must establish network ties with other firms in their locality owing to the competitive advantage (Lundequist & Power, 2002) through resources sharing and skills transfer (Lundequist & Power, 2004). Described as a cluster, Porter (1990; 2003) defined cluster as a group of interconnected related and unrelated firms, suppliers, service providers or specialized firms in a geographical area who are linked by commonalities and complementarities. On the other hand, Schmitz (1992) defined cluster as a group of firms in a same sector and within a close proximity. A cluster also comprise of small and specialized firms that undertake different but complementary activities, linked both horizontally or vertically via a mix of co-operative and competitive relations (Perry & Tumbunan, 2009) Essentially, industrial cluster may comprise of a group of firms in a geographical area who operate in a similar industry. Suffice to say that, clustering also includes firms who operate in unrelated but complementary industry. Firms normally cluster via their unique and common functions that they perform. The synergistic nature of cluster means that firms directly and indirectly develop strategies to promote their common interest.

The benefits of clusters are numerous. Porter (1990) lucidly affirmed that firms within a cluster benefits from effect of agglomeration due to similarities in infrastructure such as labour, qualified suppliers, availability of capital support, professional services, and research and development labs (Saxenian, 1994). Clusters also improves competitive advantage
(Lundequist & Power, 2002) where one firm shares the skills it owns with other organisations to foster efficient production (Power & Lundmark, 2004). Clusters of firms reduce input cost, develop common suppliers, train professional labour and produce technical knowledge, spillover effect (Tallman et al. 2004) leading to improvement in competitiveness (Bell et al. 2009; Gertler, 2003). Johnson (2003) indicated that, in a cluster, firms can easily identify emerging clients’ needs and trends, thus adjust their production to respond. In effect, the whole is greater or mightier than the sum of its part (Amoah-Mensah, 2015).

From theoretical perspective, Amoah-Mensah (2015) noted that, one relevant theory that stresses on location benefits is Porter’s cluster theory which posits that firms benefits from a cluster by increasing productivity or output via production, networking, competition, innovation and entry/creation of new firms. Park, Jaeun and Taejong (2010) agreed that industrial clustering may benefits firms through knowledge and technology spillovers which subsequently enhance critical innovation of these firms in the cluster. Cluster further promote strategies such as joint actions, which gives the cluster a collective efficiency and competitive advantage over other entities located outside the cluster (Schmitz, 1995). Amoah-Mensah (2015) in a study of Kumasi Sokoban wood village in Ghana indicated that firms in an industrial clusters share factors of production (specialized equipment and labour), engage in horizontal networking (information sharing and joint action), vertical networking (suppliers, customers and public/private institutions), healthy competition and innovation to gain competitive advantage. Following the recommendation of Amoah-Mensah (2015), we aim to discuss the effect of industrial cluster (access to factors of production, horizontal networking and innovation) competitive advantage.

Industrial Cluster and Competitive advantage

Access to factors of production

Kelynhans (2006) indicated that natural resources (land, trees, mineral deposits), capital goes (building and machines), labour and enterprise are essential factors of production. Access to right quality and quantity factors of production is essential to produce quality output and undertake large business contracts. Owing to the resource and size constraints of micro-firms, managers in this respect are motivated to seek support from other firms who have similar equipment and possess the required skill, knowledge, abilities and expertise. In this regard, industrial cluster represent a rightful place where talent often concentrate, and thus labour resources can be sped up (Krugman, 1991).
In the wood industry for instance, majority of essential industry equipment are capital intensive. Industrial cutting and design machines and sandpapering equipment and other working equipment are expensive. While majority inherit these industrial equipment from their families, few single business owners are able to acquire them. In extreme conditions, business owners form groups in order to acquire these industrial machines on credit and cash. Importantly, firms that are unable to contribute to purchase the equipment are allowed to use the equipment and machinery for their wood works at a fee. This form reduces cost of conveying all heavy wood products to other location for processing. Because all activities occur in a single location, wood operators who do not possess a skill to perform particular wood designs engages other machine operators who possess the right skill to perform the task. While these individuals are paid a fee for their service the job owner is able to monitor the work to ensure high quality.

Quite profoundly, studies have established that frequent, easy and quick access to skilled labour, professional services enhances firm’s competitive advantage (Lei & Huang, 2014). In the case of Taiwan, Feng and Wang (2007 cited in Lei and Huang 2014) found that frequent sharing of production facilities and equipment and key personnel enable firm to gain competitive advantage, and even against large firms. The issue of competitive advantage is eminent because micro-firms are able to execute their order on time and frequently because orders are executed among several firms. In the further wood industry cluster, Mawardi, Choi and Perara’s (2011) found that availability of skilled labour, raw materials are the mainstay of local external economy of the cluster. The paper argues that, mere existence of firms in a cluster is not a guarantee to outcompete firms outside the cluster. Micro-firms in cluster must improve and intensify the strength of their relationship among themselves, ensure a symmetric exchange of resources (labour and equipment) in order to achieve competitive advantage. On the backdrop of this the paper therefore proposes that:

H1a: Access to factor of production (labour and equipment) in a cluster leads to competitive advantage.

H1b: Degree of network mediates the relationship between access to factors of production and competitive advantage.

Horizontal Networking

Central to operations of micro-firms is a close relationship and contacts with other competing firms otherwise called inter-firm relationship (horizontal networking) (Amoah-Mensah, 2015). Despite the differences in description such as alliances, networking and co-operation (Narula, 2004),
Hendrike (2003) defined horizontal networking as a level of co-operation among competitive firms. In a cluster, micro-firms are exposed to varied degree of relationship and information about new business activities, market opportunities, finance opportunities, technologies among others. New information emerging from participants in the cluster is widely circulated among firms in the cluster. Because micro-firms are flexible and easily adaptable to change, managers are able to adjust their business operations and systems to explore and exploit any opportunities. In dense clusters, proactive firms anticipate transformative information and develop strategies to exploit them, thus improve competitive performance through first mover advantage. Rosenfield (1995) indicated that network-co-operation among firms to take advantage of complementarities, exploit new markets, integrate activities or bring their resources and knowledge together to achieve economies of scale.

Despite the benefits, cluster poses some degree of problems. Unfortunately, some firms in the cluster may not be willing to circulate and share relevant information and knowledge for fear of “invasion”. However, the close proximity of micro firms makes it impossible for one single business owner to monopolize information for longer period. Therefore, firms located inside a cluster are better served with high-quality knowledge than those outside (Porter 1990), because long distance of information flow may reduce the substance and quality of the information (S xenian, 1994). Subsequently, information flow in the cluster propels firms within the cluster to take first advantage. Studies such as Terziovski (2003); Premaratne (2001); Boschma and Wal (2007) revels that networking positively influences performance of small firms. In the view of Tallman et al. (2004) knowledge (information) exchange among firms remains one central element to competitive edge.

It is interesting to note that when micro-firms are located in an industrial cluster they are able to undertake structural development in their cluster such as lightning, sheds, develop their road networks, and even support social and welfare services for members. Participants jointly develop strong bargaining power in performing their business activities. Members in a cluster are able to lobby government and government agencies to provide flexible regulatory systems such as taxes rebates and support services. These incentives are essential to provide higher competitive advantage over other firms who are located outside the cluster. For a cluster to derive these services for competitive advantage require strong degree of network and association between members and support agencies. Lei and Huang (2014) noted that competitive performance of any cluster relationship is dependent on the degree of network rather than the mere close proximity of the firms in the cluster. On this backdrop, this paper proposes that:
H2a: Horizontal networking in an industrial cluster leads to competitive advantage
H2b: The effect of horizontal networking and competitive advantage is mediated by degree of network.

Innovation strategies
According to Schumpeter (1934) innovation mean the introduction of new good, the use of new materials, the development of new methods of production, the opening of new market, or the implementation of new approach to the firm. Although Quaye and Acheampong (2013) have found that small firms in Ghana are not innovative enough but further study in Ghana (Ayyagari, Asli & Maksimovic, 2011) and Taiwan (Yeh-Yun Lin & Yi-Ching Chen, 2007) has shown that some innovations have come from micro firms. Micro-firms are characterized by lack of resources and environmental constraints that has existed over the years. In this paper, the researcher is of the view that knowledge and expertise are fundamental to develop innovation such as new products, new markets and marketing tools, organizational processes, product designs among others. Fundamentally, cluster breeds innovation because firms will share information and knowledge. Indeed, studies have emphasized that micro-firm in a cluster share new knowledge among themselves which serve as sources of innovative ideas for competitive advantage (Porter, 1990).

Further studies have argued from the point that effective knowledge sharing and learning (Gilbert, McDougall & Audretsch, 2008; McCann & Folta, 2011) is the cornerstone of competitive through finding new and better ways to compete in an industry (Porter 1990). For McCann and Folta (2011) view of scholars lucidly affirm that micro firms who are actually part of geographically centered cluster easily access new ideas owing to the propensity of knowledge spillovers. Perspective of Schumpeter further supports such view to the effect that knowledge creation is a process of sharing information within an actor’s network. Consequently, building and sharing information in an industrial cluster relationship enhances innovation (Fukugawa, 2006), increases sales particularly in UK, Germany and Ireland (Roper, 1997) and India (Subrahmanya, 2011). Buttressing this view, RBV theorist support our argument that knowledge that is firm specific, complex, embedded and tacit (Grant 1996) is an essential source for competitive advantage (Lei & Huang, 2014). In this paper, the researcher conceptualize that firms in a cluster develop and share knowledge more easily and faster, thus supporting the development of unique strands of innovations for competitive advantage. This innovation development strategy among micro firms appears to be regular, unique and usually informal since it is not easy for a single competitor outside the industrial cluster to imitate the innovation. This paper therefore proposes
that:

H3a: Innovation in a cluster positively leads to competitive advantage

H3b: Degree of network mediates the effect of innovation and competitive advantage.

Performance Measurement:

Competitive advantage

Studies from management and economic perspectives have assumed that micro firms in clusters are homogeneous hence achieve similar performance (Lei & Huang, 2014). This is because several performance measures exist to determine how actual firm performance meets expectation. Studies have therefore established that close proximity of firms increases their visibility in the cluster which means that they can easily get referrals from other partners (Gilsing et al., 2008). Further studies have advanced that geographically centered firms enjoy benefits such as profits which other firms outside do not enjoy (Caniels & Romijin, 2005; Oerlemans, Meeus & Boekema, 2001). Studies measuring competitive advantage as a multidimensional scale have employed cost efficiency (production cost, selling price and cost of sales (Kaleka 2002; Wheelwright 1984), quality of service (improved features and service performance; Miller & Roth, 1994; Wheelwright, 1984), service (technical support/after sale service, product accessibility (Kelaka, 2002; Miller & Roth, 1994), Flexibility (ability to handle and responds to difficult products, non-standard orders, products and volume change (Wheelwright, 1984) and delivery dependability (timely delivery, prompt response to failures; Miller & Roth, 1994; Wheelwright, 1984). This paper selected: quality, cost, flexibility, accuracy in delivery, customer service, and innovativeness to measure competitive advantage. The researcher employed all the respondents to compare their business with other competing and non-competing firms in answering the question using five-point Likert-scale ranging from 1 (Least agree) to (Strongly agree).

Mediating Effect: degree of network

Although firms in a cluster may have similar size (employee and capital) but their degree of competitive performance may be different (Saxenian, 1994). An important question arises regarding the cause of the difference in their competitive performance. In search of answers to these questions, Lei and Huang (2014) in their study of two industrial clusters in Taiwan noted that degree of network strength plays a mediating role between cluster and competitive advantage. Degree of network measures the extent to which a firm possesses the levels of network available (Lei and Huang 2014). Using sociological quantitative evaluation of network (Knoke & Kuklinski, 1982) the study adopt the dimensions of Lei and Huang (2014)
who identified four dimensions to measure degree of network: Density, intensity, reciprocity and multiplexity. On a five point Likert-scale, respondent were asked to evaluate their perception concerning the density of their relationship with other participants (Kenis & Knoke, 2002), intensity of the relations (Tichy et al., 1979), reciprocity (symmetrical exchange of resources between firms (Kenis & Knote, 2002; Tichy et al., 1979) and multiplexity (Kenis & Knote, 2002, Tichy et al., 1979). This paper therefore proposes that strength of the network in the cluster is important to strengthen and improve competitive success of the firms.

Theoretical Foundation

Firms create competitive advantage by using their own internal resources (Barney, 1991) or leveraging external resources (Dyer & Hatch, 2006) that are valuable (exploit opportunities and/or neutralize threats in a firm’s environment), rare among a firm’s current and potential competitors, inimitable and non-substitutable (Barney, 1991). Different list of firms element are considered resources (Doherty & Terry, 2013) including assets, organizational processes, attributes, information and knowledge which are considered relevant to develop product for customer satisfaction (Barney, 1991; Wernerfelt, 1984). The advantages originating from inter-organizational networks may include provide access to complementary resources (information) for the development, production, and marketing of products (Deeds & Hill, 1996; Lamin & Dunlap, 2011). In fact, the focus of many of the recent contributions seems to have shifted towards the role of firms’ internal resources and capabilities (Hassink, 2008). Probably the reasons behind this change come from the cluster’s difficulties in coping with external challenges in the current globalized markets (Gupta & Subramaniam, 2008). This paper adopts RBV as the foundational theory to explain the role of resources (knowledge, relationships, information, factors of production and innovation) in achieving competitive advantage.

Conceptual Framework

Firms in a cluster share factors of production (equipment and labour), engage in horizontal networking (information sharing and joint action), and innovation to gain competitive advantage (Amoah-Mensah, 2015). Following the recommendation of Amoah-Mensah (2015), this paper therefore conceptualises that micro-firms in a cluster share factors of production, engage horizontal networking, jointly develop innovation to achieve competitive edge over firms outside the cluster. Competitive advantage as an independent variable was measured based on: quality output, efficiency, flexibility, accuracy in delivery, and innovativeness. Regarding the mediating variable, this paper adopted the dimensions of Lei and Huang (2014) who identified four dimensions of degree of network including: density, intensity, reciprocity and multiplexity of the network.
relationship. Figure 1 therefore depicts the conceptual framework of the relationship between industrial cluster and competitive advantage mediated by degree of network.

![Diagram of Industrial Cluster and Competitive Advantage](attachment:image.png)

Figure 1. Industrial Cluster and Competitive Advantage of Micro-firms in the Wood Industry. Source: Quaye and Mensah (2017).

Study Methods

The study was context in Cape Coast Metropolis the capital town of Central region of Ghana and the former administrative region of the then Gold Coast under the colonial era. The region has a population of 2,201,863 inhabitants with 51,697 businesses of which 6,410 are located in Cape Coast (Ghana Statistical Service, Integrated Business Enterprise Survey 2016). Within the Cape Coast metropolis, this study is limited to the Ayifuah Wood Village a suburb of the Metropolis. The village was originally formed by an entrepreneur named Nana Gyasi who initially settled at the location as the sole wood merchant trading in wood and wood related products. Subsequently, other wood merchants and operators joined trading in wood and related activities. Currently, the village has 298 wood operators engaged in buying and selling wood, wood processing and design, carpentry works and other auxiliary services. The village also has drivers, food vendors and other activities. Due to the collective effort of these wood operators, they have instituted welfare scheme to support members and organize cleaning exercises in and around the town. Again, the village with the support of Government has acquired new plots on land for future resettlement. The village generates funds through welfare contributions, offload and wood fees where operators are charged Ghc 1
The study adopts a positivist methodological paradigm in formulating research questions, hypothesis and empirically testing under careful controlled circumstances (Boateng, 2014). Using research survey design and a convenient sampling technique, this quantitative study used structured questionnaire as the primary data collection instrument. The researcher personally developed the study questionnaire and administered to 254 wood operators in the village. 249 out of the 254 questionnaires sent to the field were considered usable and valid for analysis. The self-administered questionnaire provided a major strength since there was no language barrier as the researcher understand the “Akan” language as a first traditional language.

Validity and reliability
To ensure reliability of the study, two main criteria were adopted which includes: Cronbach alpha and composite reliability mostly used in structural equation modeling (Hair, Hult, Ringle & Sarstedt, 2014; Hair, Sarstedt, Matthews & Ringle, 2015). To ensure validity in this study, construct validity measures such as: convergent validity (Rezaei & Ghodsai, 2014; Rezaei, 2015) and discriminant validity (Rezaei, 2015; Rezaei & Ghodsi, 2014) were employed. Discriminant validity used construct correlations and cross-loading criterion while convergent validity employed Average Variance Extracted (AVE) and factor loadings (Kim, Hwang Zo & Lee, 2014; Rezaei, 2015).

Data Analysis and Presentation
Analytical approach
Data Analysis was done in five main levels: Descriptive analysis, Exploratory Factor analysis (EFA), Confirmatory Factor Analysis (CFA), Structural Equation modeling (SEM-AMOS) and discussion of findings. In arriving at the findings, SPSS was used for the descriptive analysis, whereas AMOS was used for SEM to test the hypothesis. Before performing the actual analysis of the main data, preliminary data analysis was done. During the preliminary data analysis (PDA), datasets were cleaned and cleansed (Ainim et al., 2015) to eliminate unengaged responses and correct errors that could skew the research findings (Coakes, 2006).

Descriptive analysis
The paper sought to identify three descriptive elements of respondents. The paper asked respondents to indicate their age range, level of education and status of their business. This was important because the paper controlled for these characteristics in order to know how they influence competitive performance. Table 1 therefore shows the result of
Table 1. Descriptive statistics of respondents

<table>
<thead>
<tr>
<th>Profile of Respondents</th>
<th>Statement</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>18-27</td>
<td>89</td>
<td>35.7</td>
</tr>
<tr>
<td></td>
<td>28-37</td>
<td>141</td>
<td>56.6</td>
</tr>
<tr>
<td></td>
<td>38-47</td>
<td>15</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>48-57</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>58 and +</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>Education</td>
<td>No education</td>
<td>1</td>
<td>.4</td>
</tr>
<tr>
<td></td>
<td>Non-formal</td>
<td>145</td>
<td>58.2</td>
</tr>
<tr>
<td></td>
<td>Junior High School</td>
<td>90</td>
<td>36.1</td>
</tr>
<tr>
<td></td>
<td>Senior High School</td>
<td>10</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Tertiary</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>Work Status in the Cluster</td>
<td>Buying and Selling wood</td>
<td>81</td>
<td>32.5</td>
</tr>
<tr>
<td></td>
<td>Processing and designing</td>
<td>134</td>
<td>53.8</td>
</tr>
<tr>
<td></td>
<td>Carpentry</td>
<td>30</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>Other Auxiliary wood works</td>
<td>4</td>
<td>1.6</td>
</tr>
</tbody>
</table>

From Table 1, out of 249 valid responses received from the field, majority of 141 respondents representing 56.6 percent ages range between 28-37 while 89 respondents representing 35.7 percent ages ranged between 18-27. The least age group in the cluster ranged between 48-57 years. The result therefore means that the cluster is populated with youthful and vibrant wood operators who are within the ages of 18-37. In terms of educational background, majority of 145 respondents representing 58.2 percent have no formal education, followed by junior high school and senior high school graduate with 90 (36.1%) and 10 (4.0%) respectively. One respondent out 249 respondents in the cluster had no form of education. The findings indicate that a majority of wood operators in the village have either formal education or non-formal (training). The study further sought to investigate the work status of the respondents within the cluster. Three main categories were identified. The study result shows that majority of 134 wood operators in the village representing 53.8 percent process and design wood products. 81 respondents out of 249 are engaged in buying and selling of wood while minority of 4 respondents operates in other auxiliary processes.
Table 2: Descriptive Statistics of Measurement Statements (Item Code, Mean, SE Mean and Std. Deviation).

<table>
<thead>
<tr>
<th>Scale Items</th>
<th>Item Code</th>
<th>Mean</th>
<th>SE Mean</th>
<th>Std. Dev</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>I work for other members in the village for a commission</td>
<td>Fop1</td>
<td>3.39</td>
<td>.08</td>
<td>1.23</td>
<td>-.422</td>
<td>-.639</td>
</tr>
<tr>
<td>Other members can use by machine and pay me</td>
<td>Fop2</td>
<td>3.35</td>
<td>.076</td>
<td>1.20</td>
<td>-.426</td>
<td>-.694</td>
</tr>
<tr>
<td>I join other members to use my machine for special works</td>
<td>Fop3</td>
<td>3.26</td>
<td>.08</td>
<td>1.20</td>
<td>-.204</td>
<td>-.863</td>
</tr>
<tr>
<td>I use other members machine when my machine cannot undertake a particular design</td>
<td>Fop4</td>
<td>3.16</td>
<td>.07</td>
<td>1.14</td>
<td>-.245</td>
<td>-.611</td>
</tr>
<tr>
<td>My workers join other members to when I have not have a job to work on</td>
<td>Fop5</td>
<td>3.18</td>
<td>.07</td>
<td>1.24</td>
<td>-.232</td>
<td>-.922</td>
</tr>
<tr>
<td>I receive information on new wood designs in the market</td>
<td>Hol1</td>
<td>3.97</td>
<td>.06</td>
<td>1.00</td>
<td>1.150</td>
<td>1.362</td>
</tr>
<tr>
<td>Members give and share market information such as wood prices</td>
<td>Hol2</td>
<td>4.06</td>
<td>.05</td>
<td>.79</td>
<td>1.004</td>
<td>1.748</td>
</tr>
<tr>
<td>Member share information on jobs that they want others to join</td>
<td>Hol3</td>
<td>3.96</td>
<td>.053</td>
<td>.83</td>
<td>-.987</td>
<td>1.687</td>
</tr>
<tr>
<td>Members collectively influence the prices of job performed at the village</td>
<td>Hol4</td>
<td>3.67</td>
<td>.06</td>
<td>.93</td>
<td>-.585</td>
<td>-.006</td>
</tr>
<tr>
<td>Members collectively contract micro-credit facilities to help members business</td>
<td>Hol5</td>
<td>3.61</td>
<td>.07</td>
<td>1.05</td>
<td>-.701</td>
<td>.075</td>
</tr>
<tr>
<td>Members share knowledge about improvement in the wood industry</td>
<td>Inv1</td>
<td>3.46</td>
<td>.06</td>
<td>.97</td>
<td>-.460</td>
<td>-.139</td>
</tr>
</tbody>
</table>
We come together to create new wood designs for our customers | Inv2 | 3.04 | .07 | 1.09 | .004 | -.680
We share information in order to improve our work | Inv3 | 3.58 | .06 | .92 | -.593 | .223
I improve my operation processes through information from members | Inv4 | 3.57 | .06 | .92 | -.765 | .502
We share market information which helps me explore more market opportunities | Inv5 | 3.42 | .07 | 1.03 | -.458 | -.318
My relationship in the cluster in deep rooted and strong | Dnt1 | 3.38 | .07 | 1.06 | -.481 | -.280
My relationship with other members in the village is very strong | Dnt2 | 3.06 | .07 | 1.07 | -.132 | -.670
I receive benefits in the same way I help other members in the village | Dnt3 | 2.87 | .07 | 1.06 | .024 | -.652
I have a strong work relationship with members who are not in my area of work | Dnt4 | 3.2 | .07 | 1.08 | -.257 | -.496
Belonging to the village has improved the quality of my wood works | Cprf1 | 3.50 | .06 | 1.01 | -.553 | .068
My cost of jobs and contract is lower compared to if I had been outside the village | Cprf2 | 3.42 | .06 | 1.01 | -.346 | -.370
My production process and operation is flexible and easy | Cprf3 | 3.45 | .06 | .99 | -.262 | -.275
I am able to develop new wood design which brings me more | Cprf4 | 3.28 | .07 | 1.04 | -.344 | -.414
From the table 2, the highest mean recorded was 4.06 (Members give and share market information such as wood prices) while the lowest mean was 2.87 (I receive benefits in the same way I help other members in the village). This there means that members in the cluster share information as well as receive information to help themselves and their members. The 24 variables displayed in table 2 represent the components of the 5 main constructs depicted in the conceptual framework. Industrial cluster had three constructs which included access to factors of production (Fop), horizontal networking (HoI) and innovation (Inn). The mediating variable was the degree of network (Dnt) which had one construct. The dependent variable which was competitive performance (Cadv) also had 1 Construct.

The dependent and independent variables follows a normal distribution: the skewness and kurtosis values were within the acceptable limit for normal distribution of ±2 (George & Mallery, 2011) indicating that the data are close to normal. This form of data assessment was relevant and consistent with Baumgartner and Homburg (1996) who asserted that these processes ensure that the data is error free and suitable for analysis purposes.

Exploratory factor analysis

Principal component analysis was undertaken with Eigen values greater than 1. A Varimax Rotation was conducted and small co-efficients were suppressed. The absolute value was 0.5. The principal component analysis was conducted based on the responses of the 24 scales on the likert scale with the aid of SPSS version 20.

In addition, Kaiser (1970) asserted that the suitable value for the Kaiser-Meyer-Olkin (KMO) should be 0.6 or above. In this paper, the value for the KMO was .846, Bartlett’s Test of Sphericity (Bartlett, 1954) reached statistical significance (Approx.: Chi-square= 2881.798, df. 276, sig. 0.000) which aided the correlation matrix to be factorised. Table 3 shows the result for all the tests that was undertaking to order to ensure the data is “fit” for confirmatory analysis.
Table 3. Robustness test result

<table>
<thead>
<tr>
<th>Principal Component Loadings</th>
<th>Internal Consistencies</th>
<th>Construct Reliability (CR)</th>
<th>Average Variance Extracted (AVE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Code</td>
<td>Varimax</td>
<td>Variance</td>
<td>Cronbach Alpha</td>
</tr>
<tr>
<td>Factor 1</td>
<td>Fop1</td>
<td>0.825</td>
<td>75.738</td>
</tr>
<tr>
<td></td>
<td>Fop2</td>
<td>0.856</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fop3</td>
<td>0.878</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fop4</td>
<td>0.862</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fop5</td>
<td>0.823</td>
<td></td>
</tr>
<tr>
<td>Factor 2</td>
<td>Hol1</td>
<td>0.725</td>
<td>62.350</td>
</tr>
<tr>
<td></td>
<td>Hol2</td>
<td>0.845</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hol3</td>
<td>0.784</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hol5</td>
<td>0.654</td>
<td></td>
</tr>
<tr>
<td>Factor 3</td>
<td>Inv2</td>
<td>0.558</td>
<td>55.552</td>
</tr>
<tr>
<td></td>
<td>Inv3</td>
<td>0.701</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inv4</td>
<td>0.781</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inv5</td>
<td>0.665</td>
<td></td>
</tr>
<tr>
<td>Factor 4</td>
<td>Dnt1</td>
<td>0.718</td>
<td>64.892</td>
</tr>
<tr>
<td></td>
<td>Dnt2</td>
<td>0.838</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dnt3</td>
<td>0.745</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dnt4</td>
<td>0.782</td>
<td></td>
</tr>
<tr>
<td>Factor 5</td>
<td>Cadv1</td>
<td>0.769</td>
<td>57.846</td>
</tr>
<tr>
<td></td>
<td>Cadv2</td>
<td>0.802</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadv3</td>
<td>0.831</td>
<td></td>
</tr>
</tbody>
</table>

From Table 3, out of a total of 24 measurement items, 21 loaded very well above a threshold set at 0.5. While all items in factors of production were maintained, one item each from horizontal networking and innovation construct were deleted. In terms of the mediating variable (degree of network), all the items on that construct was maintained. In terms of the dependent variable, competitive performance, 4 items were maintained while 1 was dropped (Cadv4). Internal consistencies were examined using Cronbach Alpha values. The retained scales or items met the threshold for Cronbach alpha of 7.0. According to Cronbach (1951) the Cronbach alpha value should be 7.0 or above before a data collection instrument can be deemed reliable.

The reliability measures in this study are above the acceptable levels
Cronbach’s alphas > .70, Average Variance Extracted > .50, composite reliability > .70) as recommended by scholars (Fornell & Larcker, 1981). Furthermore, the factor loadings (ranging from 0.56 to 0.878) showed good convergent validity. The result for validity and reliability indicators of the final measurement model together are displayed in the robustness table above.

Table 4 shows the model fit indices for the structural model before and after some measurement items were dropped. The table shows that the main indicators improved after three items were deleted from the dependent and independent construct. After some items were deleted correlation matrix was checked to indicate the degree of strength among the variables. Table 5 below also shows that there is a strong correlation among the study construct.

Table 4. Improvement of Fit Indices

<table>
<thead>
<tr>
<th>Phase</th>
<th>Modification</th>
<th>GFI</th>
<th>PCLOSE</th>
<th>SRMR</th>
<th>RMSEA</th>
<th>NFI</th>
<th>CFI</th>
<th>AGFI</th>
<th>χ^2/df</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Original Model</td>
<td>0.86</td>
<td>0.03</td>
<td>0.06</td>
<td>0.06</td>
<td>0.85</td>
<td>0.92</td>
<td>0.83</td>
<td>1.8/93</td>
</tr>
<tr>
<td>II</td>
<td>Deleted: Horizt_Integrtn 1, Innovati on:_Dev 1, and Perf5</td>
<td>0.96</td>
<td>0.67</td>
<td>0.06</td>
<td>0.05</td>
<td>0.96</td>
<td>0.96</td>
<td>0.94</td>
<td>1.5/46</td>
</tr>
</tbody>
</table>

Table 5. Correlation Matrix after deletion.

<table>
<thead>
<tr>
<th></th>
<th>FOP</th>
<th>HZIT</th>
<th>INNV</th>
<th>PERF</th>
<th>DON</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOP</td>
<td>0.824</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HZIT</td>
<td>0.210</td>
<td>0.711</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INNV</td>
<td>0.436</td>
<td>0.596</td>
<td>0.641</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERF</td>
<td>0.536</td>
<td>0.425</td>
<td>0.328</td>
<td>0.730</td>
<td></td>
</tr>
<tr>
<td>DON</td>
<td>0.269</td>
<td>0.308</td>
<td>0.353</td>
<td>0.198</td>
<td>0.733</td>
</tr>
</tbody>
</table>

Confirmatory factor analysis

After all five dependent and independent variables have been confirmed “fit” the researcher proceeded to confirmatory analysis using SEM (AMOS) in order to test the two main hypotheses (H1a-c and H2a-c).
Structural model: testing direct relations between independent and dependent relationship

H1a: Access to factors of production positively affects competitive advantage.

H2a: Horizontal networking positively affects competitive advantage

H3a: Innovation positively affects competitive advantage

Figure 2. Structural equation model for industrial cluster and competitive advantage.

Table 6: Hypothesis test result without mediator.

<table>
<thead>
<tr>
<th>Relationship (Hypothesis)</th>
<th>Construct Structural Relationship</th>
<th>β Estimate</th>
<th>SE</th>
<th>T-Values</th>
<th>P-Value</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis 1a: Access to factors of Production has a Positive Relationship With Competitive Advantage</td>
<td>FOP \rightarrow Cadv</td>
<td>0.113</td>
<td>0.051</td>
<td>1.811</td>
<td>0.070</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>
Hypothesis 2a: Horizontal Networking has a Positive Relationship with Competitive advantage

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HZIT > Cadv</td>
<td>0.196</td>
<td>0.073</td>
<td>3.172</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Supported

Hypothesis 3a: Innovation development has a Positive relationship with Competitive Advantage

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>INNV > Cadv</td>
<td>0.159</td>
<td>0.059</td>
<td>2.545</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Supported

Table 6 explains the direct relationship among the various constructs of the independent variable (access to factors of production, horizontal networking and innovation) and the dependent variable (competitive advantage). Factors of production (H1a) which is a construct for industrial cluster does not have a significant relationship with competitive performance and as a result of that, the hypothesis is not supported. This is because, a construct or a variable must have a t-value ≥ 1.96 and p-value ≤ 0.05 in order for the relationship to be supported and since the relationship between factors of production and competitive advantage has t-value <1.96 which is 1.811 and a corresponding p-value of 0.070 which is >0.05, there is no significant relationship. On the other hand, horizontal networking has a significant relationship with competitive advantage (H1b; t-value is 3.172 > 1.96; p-value =0.002<0.050). Again, the paper found a significant effect of innovation on competitive advantage (H1b: t-value 2.545 > 1.96; p-value= 0.011 <0.05). Regarding control variables, our model found a significant influence of work status on competitive advantage while the study did not find any influence of education level on competitive advantage of firms in the cluster.

Structural Model: Testing independent variable relationship and dependent variable with mediator

Figure 3 shows the direct effect of the three independent variables (factors of production, horizontal networking and innovation) and one dependent variable (competitive advantage) mediated by degree of network. The study also controlled for level of education and work status of the respondents.
Figure 3. Industrial cluster and competitive advantage mediating with degree of network.

Table 7 presents insights into hypotheses (H1b-H3b) which highlight the relationship between factors of production, horizontal networking, innovation and competitive performance with the presence of the mediating variable, degree of networking.

<table>
<thead>
<tr>
<th>MEDIATION TEST</th>
<th>Direct Without Mediator</th>
<th>Direct With Mediator</th>
<th>Mediation Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis 1b: Degree of Network Mediates the relationship between Factors of Production and Competitive advantage</td>
<td>β: 0.113, P-value 0.070</td>
<td>β: 0.075, P-value 0.146</td>
<td>No Mediation</td>
</tr>
<tr>
<td>Hypothesis 2b: Degree of Network Mediates the relationship between Horizontal Networking and Competitive advantage</td>
<td>β: 0.196, P-value 0.002</td>
<td>β: 0.210, P-value 0.005</td>
<td>Partial Mediation</td>
</tr>
</tbody>
</table>
Study hypothesis (H1b) proposed that degree of network in a cluster mediates the relationship between factors of production and competitive advantage. Surprisingly, the study showed insignificant effect of access to factors of production and competitive advantage, thus the degree of network does not mediate the relationship. Thus, the hypothesis is not supported. Hypothesis (H2b) also proposed that degree of network in a cluster mediates the relationship between horizontal networking and competitive advantage. Although the study found a significant effect of horizontal networking and competitive performance, the mediation effect shows that degree of network partially mediates the relationship between horizontal networking and competitive advantage. Thus, the hypothesis is supported. Study hypothesis (H3b) proposed that degree of network mediates the relationship between innovation and competitive advantage. The study result shows that degree of network partially mediates the relationship between innovation and competitive advantage. Thus, the hypothesis is supported.

Discussion of Findings

The research finding indicated that access to factors of production does not influence competitive advantage. This is because the relationship access to factors of production and competitive advantage (H1) is not supported. Surprisingly, the study result means that sharing factors of production such as capital and labour in cluster does not directly influence competitive advantage. This finding is contrary to Lei and Huang (2014); Feng and Wang (2007) who found that easy access to skilled labour, frequent sharing of production facilities and equipment create competitive advantage, but it is consistent with research findings of Yoshi Takahashi (2009) which indicated that lending factors of production within a cluster does not influence competitive advantage. This result also means that wood operators in the village share equipment, facilities and labour but such collaborative efforts yield not results in improving their competitive performance.

Our second study hypothesis (H2) supports previous studies that found a significant effect of horizontal networking and competitive performance (Tallman et al. 2004). Thus, information sharing and collective action of members in the village influence the competitive performance of their businesses. Our study result further confirms the findings of Dockel and
Lambrecht’s result that indicated that networking influence firm performance.

Regarding hypothesis (H1), previous studies have found a significant influence of innovation and competitive performance of small-sized firms (Caniels & Romijn, 2005; Gilbert et al., 2008; Lei & Huang, 2014; McCann & Folta 2011), our study result support these findings. The findings from this study supported the existence of a positive relationship between innovation and competitive advantage of cluster of small firms. Thus, innovation development among the members in the cluster directly influences competitive advantage. This finding further confirms empirical studies noting that cluster are more successful through innovation, compared to similar firms that are not part of the cluster (Caniels & Romijn, 2005).

The overall effect of the hypothesis (H1-H3) findings of the research confirms previous studies that clustering strategies including sharing and exchange of new knowledge, new market and improved processes play a very significant role in achieving competitive advantage (Power & Lundequist, 2004). Thus, apart from factors of production, horizontal networking and innovation development directly influences firm performance. The study confirms previous studies by Lundequist and Power (2002) that industrial cluster create competitive advantage. These findings however appear contrary to Meyer-Stamer (2002) who questioned the relevance of industrial clustering.

Summary

The study used convenience sampling approach to sample size of 254 wood operators to undertake exploratory factor and confirmatory factor analysis with the use of AMOS version 21. The findings indicated that there was no significant relationship between factors of production and competitive advantage. Again, the study found a significant relationship between horizontal networking and competitive advantage. Thirdly, the study found a significant relationship between innovation development and competitive advantage. Thus, apart from access to factors of production, horizontal networking and innovation development among members in a cluster affects the competitive position of firms in cluster.

Another objective was to determine the mediating role of degree of network on the relationship between industrial cluster and competitive advantage. Degree of network did not mediate the relationship between access to factors of production and competitive advantage since the direct relationship was not supported. As a result, no mediation could occur. On the other hand, degree of network partially mediated the relationship
between horizontal networking and competitive advantage, and innovation and competitive advantage.

Conclusion
The conclusion is discussed below. Industrial cluster and the role that degree of network plays in achieving competitive advantage cannot be underestimated. The research findings indicated that horizontal networking and innovation in a cluster significantly create competitive advantage. The study also concludes that sharing factors of production in a cluster of wood operators does not improve the competitive advantage of firms in the cluster. The finally concludes that degree of network mediate the relationship between horizontal networking, innovation, and competitive advantage.

Recommendations and Practical implications
The following recommendations have been made based on the research findings and conclusion.

The study recommends that cluster firms must share relevant product design information, market information and job/contract information in order to improve their competitive performance. Again, the study recommends that industrial clustering must be approached with “win-win” syndrome which is built on strong, deep rooted and reciprocal relationships. From policy objective, there is the need for a common platform for all members in the cluster in such a way that learning and innovation are open to all members of the cluster, thus generating dynamic capabilities among all members (Paul et al., 2017). Although access to factors of production was not significant, the study recommends that members must improve the benefits of collective use of machines and labour and other resources to improve their competitive strength.

Directions for Further Research
There are some directions for future research. The study was done in Central regional capital of Cape Coast. Other studies may be done in other regions of Ghana and beyond in order to widen knowledge on the relationship between industrial cluster and competitive advantage. Again, this study investigate the relationship between firms within a cluster, other studies may consider undertaking a comparative investigation on the relationship between firms in the cluster and firms outside the cluster. The researcher used a non-probability sampling technique, convenience sampling which makes generalisation of findings difficult. A probability technique such as simple random can be used to undertake future research.
References

Research and Austrailian Research Concil.

Corresponding Author:
Isaac Mensah can be contacted via: imensah012@st.ug.edu.gh